The mechanism of cruciform formation in supercoiled DNA: initial opening of central basepairs in salt-dependent extrusion.
نویسندگان
چکیده
There are two alternative pathways by which inverted repeat sequences in supercoiled DNA molecules may extrude cruciform structures, called C-type and S-type. S-type cruciforms, which form the great majority, are characterised by absolute requirement for cations to promote extrusion, which then proceeds at higher temperatures and with lower activation parameters than for C-type cruciforms. The mechanism proposed for S-type extrusion involves an initial opening of basepairs limited to the centre of the inverted repeat, formation of intra-strand basepairing and a four-way junction, and finally branch migration to the fully extruded cruciform. The model predicts that central sequence changes will be more kinetically significant than those removed from the centre. We have studied the kinetics of cruciform extrusion by a series of inverted repeats related to that of pIRbke8 by either one or two mutations in the symmetric unit. We find that mutations in the central 8 to 10 nucleotides may profoundly affect extrusion rates--the fastest being 2000-fold faster than the slowest, whereas mutations further from the centre affect rates to a much smaller extent, typically up to ten-fold. These data support the proposed mechanism for extrusion via central opening.
منابع مشابه
Helix stability and the mechanism of cruciform extrusion in supercoiled DNA molecules.
The kinetic properties of cruciform extrusion in supercoiled DNA molecules fall into two main classes. C-type cruciforms extrude in the absence of added salt, at relatively low temperatures, with large activation energies, while S-type cruciforms exhibit no extrusion in the absence of salt, and maximal rates at 50 mM NaCl, with activation energies about one quarter those of the C-type. These di...
متن کاملStable cruciform formation at inverted repeat sequences in supercoiled DNA.
This paper analyzes equilibrium superhelical cruciform formation in a topologial domain of DNA containing inverted repeat sequences. The cruciform conformation is shown to he stable when the molecule is sufficiently negatively supercoiled but not when it is positively supercoiled. For a particular sequence containing a single inverted repeat, onset of stability occurs at a degree of negative su...
متن کاملSlow cruciform transitions in palindromic DNA.
Extrusion of cruciform structures in self-complementary regions of DNA is known to be favored by negative supercoiling of DNA. We show here that, in moderately supercoiled DNA, cruciform extrusion is a very slow process. In plasmid pUC7 DNA, with a 48-base-pair palindrome, the half-time of extrusion at 50 degrees C is typically several hours; rates are even slower at lower temperature. The rate...
متن کاملLong range structural communication between sequences in supercoiled DNA. Sequence dependence of contextual influence on cruciform extrusion mechanism.
Sequence context may profoundly alter the character of structural transitions in supercoiled DNA (Sullivan, K. M., and Lilley, D. M. J. (1986) Cell 47, 817-827). The A + T-rich sequences of ColE1, which flank the inverted repeat, are responsible for cruciform extrusion following a mechanistic pathway which proceeds via a relatively large denatured region. This C-type mechanism results in kineti...
متن کاملThe effects of nucleotide sequence changes on DNA secondary structure formation in Escherichia coli are consistent with cruciform extrusion in vivo.
The construction in bacteriophage lambda of a set of long DNA palindromes with paired changes in the central sequence is described. Identical palindrome centers were previously used by others to test the S-type model for cruciform extrusion in vitro. Long DNA palindromes prevent the propagation of carrier phage lambda on a wild-type host, and the sbcC mutation is sufficient to almost fully alle...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 15 23 شماره
صفحات -
تاریخ انتشار 1987